-
带漏电感的反激式转换器平均模型
在本文第一部分,我们已说明了由漏电感带来的开关效应:有效占空比的减少,带来在主电源开关关断后次级二极管导通时间的延长和次级端电流的延迟。因此,输出电压低于原来的公式预测,在RCD钳位网络中的功率耗散增加。鉴于漏电感对工作波形的影响,研究其对反激式转换器小信号响应的影响是有趣的。但在我们进行小信号分析前,需要一个好的平均模型。
2021-03-11
-
揭开开关电源的秘密面纱
随着电力电子技术的不断创新,开关电源技术也在不断地提升。时至今日,开关电源已经以小型、轻量和高效率的特点被广泛应用在几乎所有的电子设备中,是当今电子信息产业飞速发展过程中不可或缺的一种电源方式。但是开关电源的EMC的问题一直是一个头疼的事。
2021-03-11
-
开关电源布局和印制板布线原则
在生活中,你可能接触过各种各样的电子产品,那么你可能并不知道它的一些组成部分,比如它可能含有的开关电源,那么接下来让小编带领大家一起学习开关电源布局以及印制板布线的一些原则。
2021-03-10
-
分析和仿真PCB交流电阻损耗,优化DrMOS核心电压
作为开关电源损耗的一部分,印刷电路板(PCB)主回路纹波电流阻抗的损耗常被忽略不计。然而,对于采用大电流核心电压和高纹波电流工作的应用而言,这种损耗却不容忽视。使用Ansys Q3D,可以提取典型核心电压功率级 PCB 布局中主回路纹波电流的频变电阻参数,还可以看出这一损耗成分是如何显著改善建模与测量总损耗之间的相关性(开关频率函数)。为了在负频率系数PCB与无源元件损耗和正频率系数MOSFET常规开关损耗之间的平衡点处达到峰值效率,我们提出了一种优化开关频率的解析表达式。
2021-03-09
-
基于 LCC 拓扑的 2 相输入 300W AC-DC LED 电源
近年来,谐振变换器的热度越来越高,被广泛用于计算机服务器、电信设备、灯具和消费电子等各种应用场景。谐振变换器可以很容易地实现高能效,其固有的较宽的软开关范围很容易实现高频开关,这是一个关键的吸引人的特性。本文着重介绍一个以半桥LCC谐振变换数字控制和同步整流为特性的300W电源。
2021-03-09
-
带I2C控制的集成DC/DC升降压变换器
MP8859 是一款4开关同步升降压变换器。 它支持2.8V至22V的宽工作输入电压范围(电流高达4A),可提供1V至20.47V范围内的输出电压(电流高达3A),以10mV为步长。通过方便易用的I2C接口,用户可以轻松配置操作参数。这使得MP8859非常适用于USB PD和电池供电的便携式设备。
2021-03-05
-
设计开关电源之前,必做的分析模拟和实验(之二)
环路控制是开关电源设计的一个重要部分。文章综述了目前可供选择的一些工具,让您在开始生产开关电源之前能够计算、模拟和测量您的原型,从而确保生产工作安全顺利。本文将主要讨论获取功率级动态响应和选择交越频率和相位裕度。
2021-03-05
-
从电路的构建??榈狡骷≡瘢琍LL的基本原理你参透了吗?
锁相环(PLL)电路存在于各种高频应用中,从简单的时钟净化电路到用于高性能无线电通信链路的本振(LO),以及矢量网络分析仪(VNA)中的超快开关频率合成器。
2021-03-04
-
当软件去抖动不合适时,如何实现开关和继电器硬件去抖动?
在电气和电子工程中,开关是一种能够“接合”或“断开”电路的组件,从而中断电流或将电流从一个导体转到另一个导体。正如工程师们所知,开关有许多不同的类型,包括拨动开关、摇臂开关、按钮开关、微动开关和限位开关、磁性开关和磁簧开关以及继电器等。所有开关都有一个共同点:就是有抖动。这就是它们的工作方式。
2021-03-04
-
如何利用SiC高效驱动电动车?
电动汽车正在推动今天的能量转换技术的极限,而大功率SiC FET的出现推动了这一技术。SiC FET有许多优点:允许更高的开关速度和更高的电压,从而产生更小的磁性、更轻的电缆和更高的效率。这些改进使电动汽车行驶里程更长,性能更强。
2021-03-04
-
ADI高功率硅开关可节省大规模MIMO RF前端设计中的偏置功率和外部组件
多输入、多输出 (MIMO) 收发器架构广泛用于高功率 RF 无线通信系统的设计。作为迈入 5G 时代的一步,覆盖蜂窝频段的大规模 MIMO 系统目前正在城市地区进行部署,以满足用户对于高数据吞吐量和一系列新型业务的新兴需求。高度集成的单芯片射频收发器解决方案 (例如,ADI 新推出的 ADRV9008/ADRV9009产品系列) 的面市促成了此项成就。在此类系统的 RF 前端部分仍然需要实现类似的集成,意在降低功耗 (以改善热管理) 和缩减尺寸(以降低成本),从而容纳更多的 MIMO 通道。
2021-03-03
-
输入电容器选型要着眼于纹波电流、ESR、ESL
在开关电源电路中需要有输入电容器与输出电容器,它们各自处理的电压与电流的性质是不同的。因为将输入与输出分开讲解更容易理解,所以从输入电容器开始说明。为慎重起见,首先简单说明一下关于流过输入电容器的电流。这是之后内容的前提。
2021-03-02
- 面板行业自律控产,1月电视面板价格全线上涨!
- AI需求引爆市场,DRAM价格连季狂飙,第二季度预计再涨20%
- 存储市场彻底疯狂!存储芯片暴涨10倍,终端产品承压
- 赋能自主系统!贸泽开售Xsens Avior OEM IMU,解锁高精度姿态数据
- 贸泽开售Molex PowerWize互连器件,覆盖核心大功率应用
- 湾区“芯”力量齐聚珠海!大湾区化合物半导体生态应用大会暨半导体产业CEO大会召开
- 贸泽电子2025年新品成果亮眼,四季度逾7000款物料加速赋能产业创新
- 第107届中国电子展——聚焦电子元器件产业链,共谋高质量发展
- 人机协同与数字孪生:开启工业机械黄金新时代
- HUAWEI XMC从容试驾体验活动,探索“从容出行”新方式
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车??榕赘涸氐慕饩龇桨?/a>
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall


