-
MHz级电流测量突破:分流电阻电感补偿技术解密
在第三代半导体(SiC/GaN)驱动的ns级开关场景中,表面贴装分流电阻(SMD CVR)的寄生电感已成为高频电流测量的首要瓶颈。实测表明:2mΩ/2512封装电阻在150V/ns瞬态下产生>38%电压过冲,导致1MHz频点测量误差飙升至8.7%(Vishay WSLP2512测试数据),严重制约车载电控、射频功放等对DC-3MHz带宽、±1%精度要求的应用。本文提出基于矢量网络分析仪(VNA)的频响建模技术,通过精准量化寄生参数(Lp/Cp),并设计临界阻尼RC补偿网络,将1MHz测量误差压缩至<1%、过冲抑制>90%,单方案成本<$0.1,为高可靠性功率系统提供底层保障。
2025-07-01
-
3μV噪声极限!正弦波发生器电源噪声净化的七阶降噪术
当10MHz正弦波的电源抑制比(PSRR)下降20dB,输出信号总谐波失真(THD)将恶化10倍!高频开关电源的百mV级纹波、LDO基准源的μV级噪声,甚至PCB地弹效应,都可能在输出频谱上产生-60dBc的杂散。本文揭示三类电源噪声(低频纹波/高频开关/地回路干扰)的耦合路径,并提供从芯片级到系统级的七重净化方案,助您将电源噪声压至<3μV RMS。
2025-06-30
-
一文读懂SiC Combo JFET技术
安森美具有卓越 RDS(on)*A 性能的 SiC JFET,特别适用于需要大电流处理能力和较低开关速度的应用,如固态断路器和大电流开关系统。得益于碳化硅(SiC)优异的材料特性和 JFET 的高效结构,可实现更低的导通电阻和更佳的热性能,非常适合需要多个器件并联以高效管理大电流负载的应用场景。
2025-06-26
-
μV级精度保卫战:信号链电源噪声抑制架构全解,拒绝LSB丢失!
在精密测量、医疗仪器及工业传感系统中,信号链的μV级精度直接决定系统性能上限。而电源噪声,常以隐形杀手的姿态吞噬ADC/DAC的有效位数——当1mV电源纹波可导致12位ADC丢失4个LSB时,电源架构选型便成为精度保卫战的核心战场。本文从噪声频谱与拓扑本质出发,拆解LDO、开关电源及混合架构的噪声基因,并通过多场景实测数据,揭示高精度信号链的电源设计法则。
2025-06-19
-
如何解决在开关模式电源中使用氮化镓技术时面临的挑战?
在开关模式电源(SMPS)中使用氮化镓(GaN)技术时,尽管其在高功率密度、高频开关和低功耗方面具有显著优势,但也面临一系列技术挑战。
2025-06-10
-
不同拓扑结构中使用氮化镓技术时面临的挑战有何差异?
氮化镓(GaN)器件因其高开关频率、低导通损耗的特性,正在快速渗透消费电子、汽车电驱和数据中心等领域。然而,不同拓扑结构对GaN器件的需求呈现显著差异:例如快充领域的LLC谐振拓扑需要高频率下的电磁干扰控制,而车载双向逆变器更关注动态电阻与耐压性能。本文将深入分析半桥拓扑、双向逆变拓扑、多电平拓扑及汽车主驱??橹械牡丶际跬吹?,揭示材料特性与系统设计间的矛盾性关系。
2025-06-10
-
集成化栅极驱动IC对多电平拓扑电压均衡的破解路径
在新能源汽车主驱??椋ㄈ?00V平台)中,多电平拓扑通过串联开关器件实现高压阶梯化处理,但分立式驱动方案面临两大核心挑战。
2025-06-10
-
多通道同步驱动技术中的死区时间纳米级调控是如何具体实现的?
在电力电子系统中,多通道同步驱动的死区时间直接影响系统效率和安全性。传统方案常面临时序误差累积(±10ns以上)、开关损耗高(占系统总损耗15%-25%)和模式切换不灵活等痛点。纳米级死区调控技术通过硬件架构革新与智能算法协同,将控制精度提升至亚纳秒级,为新能源汽车、高频电源等场景提供关键技术支撑。本文将深入解析其实现路径与产业突破方向。
2025-06-10
-
高频时代的电源革命:GaN技术如何颠覆传统开关电源架构?
在电力电子系统对能效和功率密度要求日益严苛的背景下,氮化镓(GaN)技术已成为推动开关模式电源(SMPS)发展的核心动力。相较于传统硅基器件,GaN凭借其3.4eV的宽禁带特性、更高的电子迁移率(990-2000 cm2/V·s)及更低的导通电阻(RDS(ON)),可将开关频率提升至兆赫级,同时减少30%以上的能量损耗。然而,其实际应用中仍面临驱动设计、热管理、电磁兼容性等挑战。以半桥降压转换器为例,GaN开关的栅极电压耐受值更低(通常<6V),且快速切换(dV/dt达100V/ns)易引发寄生振荡和电磁干扰(EMI),这对电路布局和驱动控制提出了更高要求。
2025-06-09
-
车辆区域控制架构关键技术——趋势篇
向软件定义汽车 (SDV) 的转型促使汽车制造商不断创新,在区域控制器中集成受保护的半导体开关。电子保险丝和 SmartFET 可为负载、传感器和执行器提供?;?,从而提高功能安全性,更好地应对功能故障情况。不同于传统的域架构,区域控制架构采用集中控制和计算的方式,将分散在各个 ECU 上的软件统一交由强大的中央计算机处理,从而为下游的电子控制和配电提供了更高的灵活性。
2025-06-04
-
如何通过 LLC 串联谐振转换器优化LLC-SRC设计?
十几年来,电源行业广泛采用了图 1 中所示的电感器-电感器-电容器 (LLC) 串联谐振转换器 (LLC-SRC) 作为低成本、高效率的隔离式功率级,其中包含两个谐振电感器(两个“L”:Lm 和 Lr)和一个谐振电容器(一个“C”:Cr)。LLC-SRC 器件具有软开关特性,没有复杂的控制方案。得益于软开关特性,该器件支持使用额定电压较低的元件,并可提高效率。该器件采用简单的控制方案,即具有 50% 固定占空比的变频调制方案,与相移全桥转换器等用于其他软开关拓扑的控制器相比,所需的控制器成本更低。
2025-05-21
-
工程师必看!从驱动到热管理:MOSFET选型与应用实战手册
MOSFET因其独特的性能优势,已成为模拟电路与数字电路中不可或缺的元件,广泛应用于消费电子、工业设备、智能手机及便携式数码产品中。其核心优势体现在三个方面:驱动电路设计简化,所需驱动电流远低于BJT,可直接由CMOS或集电极开路TTL电路驱动;开关速度优异,无电荷存储效应,支持高速工作;热稳定性强,无二次击穿风险,高温环境下性能表现更稳定。这些特性使MOSFET在需要高可靠性、高效率的场景中表现尤为突出。
2025-05-15
- 面板行业自律控产,1月电视面板价格全线上涨!
- AI需求引爆市场,DRAM价格连季狂飙,第二季度预计再涨20%
- 存储市场彻底疯狂!存储芯片暴涨10倍,终端产品承压
- 赋能自主系统!贸泽开售Xsens Avior OEM IMU,解锁高精度姿态数据
- 贸泽开售Molex PowerWize互连器件,覆盖核心大功率应用
- HUAWEI XMC从容试驾体验活动,探索“从容出行”新方式
- 意法半导体荣膺2026年全球杰出雇主
- - 硬核实力赋能存储升级——奎芯科技ONFI IP技术解析
- 以综合数字孪生为基,构建航空航天整体协同系统工程
- Allegro创新解决方案助力电动汽车 、AI数据中心及清洁能源系统提升功率密度与效率
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall




